Math 31 - Homework 1

Due Friday, June 29

Easy

1. Do Section 1.5, \#1. [Note: The author uses (a, b) to mean $\operatorname{gcd}(a, b)$.]
2. Verify that the following elements of $\left\langle\mathbb{Z}_{n}, \cdot\right\rangle$ are invertible, and find their multiplicative inverses.
(a) 4 in \mathbb{Z}_{15}
(b) 14 in \mathbb{Z}_{19}
3. In each case, determine whether $*$ defines a binary operation on the given set. If not, give reason(s) why $*$ fails to be a binary operation.
(a) $*$ defined on \mathbb{Z}^{+}by $a * b=a-b$.
(b) $*$ defined on \mathbb{Z}^{+}by $a * b=a^{b}$.
(c) $*$ defined on \mathbb{Z} by $a * b=a / b$.
(d) $*$ defined on \mathbb{R} by $a * b=c$, where c is at least 5 more than $a+b$.
4. Determine whether the binary operation $*$ is associative, and state whether it is commutative or not.
(a) $*$ defined on \mathbb{Z} by $a * b=a-b$.
(b) $*$ defined on \mathbb{Q} by $a * b=a b+1$.
(c) $*$ defined on \mathbb{Z}^{+}by $a * b=a^{b}$.
5. Do Section 2.1, \#1 of Herstein.

Medium

6. Suppose that $*$ is an associative and commutative binary operation on a set S. Show that the subset

$$
H=\{a \in S: a * a=a\}
$$

of S is closed under *. (The elements of H are called idempotents for *.)
7. Do Section 2.1, \#9.
8. Do Section $2.1 \# 13$. We handled groups of order 1,2 , and 3 in class, so you just need to prove that any group of order 4 must be abelian. [Hint: There will be two possible group tables in this case.]

Extra credit: Try to extend Problem 8 by showing that any group of order 5 must also be abelian. [This is exercise \#21 of Section 2.1 in Herstein.]

